

University of Oviedo

Laser and Plasma Spectroscopy Research Group www.unioviedo.es/gelp

Magnetically Boosted Glow Discharge Optical Emission Spectroscopy for Analytical Applications: Pros and Cons

J. Pisonero, N. Bordel

Rf-GD-OES is an analytical technique widely used for material characterization in different techological fields

Rf-GD-OES is an analytical technique widely used for material characterization in different techological fields ✓ Fast and sensitive multielemental analysis for solid materials ✓ Low matrix effects (separated atomization and excitation/ionization processes)

✓ High depth resolution (~nm)

Rf-GD-OES is an analytical technique widely used for material characterization in different techological fields ✓ Fast and sensitive multielemental analysis for solid materials ✓ Low matrix effects (separated atomization and

excitation/ionization processes)

✓ High depth resolution (~nm)

✓ Good detection limits (µg/g)

Rf-GD-OES is an analytical technique widely used for material characterization in different techological fields ✓ Fast and sensitive multielemental analysis for solid materials ✓ Low matrix effects (separated atomization and excitation/ionization processes)

✓ High depth resolution (~nm)

✓ Good detection limits (µg/g)

BUT Innovative strategies are still wanted to further improve the GD's capabilities

Rf-GD-OES is an analytical technique widely used for material characterization in different techological fields Fast and sensitive multielemental analysis for solid materials Low matrix effects (separated atomization and excitation/ionization processes)

High depth resolution (~nm)

✓ Good detection limits (µg/g)

BUT Innovative strategies are still wanted to further improve the GD's capabilities

Rf-GD-OES is an analytical technique widely used for material characterization in different techological fields Fast and sensitive multielemental analysis for solid materials Low matrix effects (separated atomization and excitation/ionization processes)

✓ High depth resolution (~nm)

✓ Good detection limits (µg/g)

BUT Innovative strategies are still wanted to further improve the GD's capabilities

v'

Θ

 \vec{F}_E

Due to the magnetic and electric field combination (defined by the Lorentz Force) the plasma electron paths are modified.

$$\vec{F} = q \cdot \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

$$\vec{E} \downarrow \stackrel{\vec{v}\uparrow}{=} \stackrel{\vec{v}f}{=} \stackrel{\vec{v}f}{=} \vec{F}_{E}$$

┶

Due to the magnetic and electric field combination (defined by the Lorentz Force) the plasma electron paths are modified.

$$\vec{F} = q \cdot \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

Due to the magnetic and electric field combination (defined by the Lorentz Force) the plasma electron paths are modified.

$$\vec{F} = q \cdot \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

- \blacktriangleright Electrons are more effectively confined than ions by the magnetic field R_e is aprox. 300 lower than R_i
- Ions are not affected by the presence of the magnetic field R_i is higher that the size of the plasma
- > The higher the magnetic field the lower the radius

The electron residence time on the GD plasma is enlarged and collision probability is increased.

> Electrons are more effectively confined than ions by the magnetic field

The electron residence time on the GD plasma is enlarged and collision probability is increased.

Excitation/ionization efficiencies, plasma distribution, transport processes....may be affected.

The electron residence time on the GD plasma is enlarged and collision probability is increased.

Excitation/ionization efficiencies, plasma distribution, transport processes....may be affected.

		Ì
	Emission intensities	
Effect of the magnetic field on -	Depth resolution	
	Sputtering rates	
	-	ļ

GD TYPE	MAGNETIC FIELD	EMISSION LINES	ENHANCEMENT FACTOR	REFERENCE
Hollow cathode	50 mT on magnet surface (plasma site)	Mg I – 285.2 nm	up to 3	Raghani <i>et al</i> . <i>Appl. Spectrosc.,</i> 1996, 50 , 417
Hollow cathode	100 mT on cathode axis (plasma site)	Cu I – 324.7 nm	up to 4	Simonneau <i>et al.</i> <i>Appl. Spectrosc.,</i> 1989, 43 , 141
Planar cathode 60 mT on cathode surface (sample backside)	60 mT on cathode surface	Cu I – 406.2 nm	up to 7	Mc.Caig et al.
	(sample backside)	Al I – 396.2 nm	up to 7	Appl. Spectrosc., 1990, 44 , 1176
	Planar cathode 30 mT on cathode surface (plasma site)	Cu I – 324.7 nm	up to 1.3	Chen <i>et al</i> . SAB 1997, 52 , 1161
Planar cathode 30		Al I – 396.2 nm	up to 1.5	
		Ni I – 341.5 nm	up to 1.8	
Grimm	10 mT on cathode surface (sample backside)	Al I – 396.2 nm	up to 1.5	Alberts <i>et al</i> . JAAS, 2010, 25 , 1247
Grimm	32 mT on cathode surface (sample backside)	Cu I – 282.4 nm	up to 2	Heintz <i>et al</i> . Appl. Spectrosc., 1995, 49 , 241

GD TYPE	MAGNETIC FIELD	EMISSION LINES	ENHANCEMENT FACTOR	REFERENCE
Hollow cathode	50 mT on ma (plasm		up to 3	Raghani <i>et al.</i> Appl. Spectrosc., 1996, 50 , 417
Hollow cathode	100 mT on c (plasm		up to 4	Simonneau <i>et al.</i> Appl. Spectrosc., 1989, 43 , 141
Dlanar oothodo	60 mT on cat		up to 7	Mc.Caig et al.
Planar cathode	(sample b		up to 7	Appl. Spectrosc., 1990, 44, 1176
			up to 1.3	
Planar cathode	30 mT on cat (plasm Cathode	Anode	up to 1.5	Chen <i>et al.</i> <i>SAB</i> 1997, 52 , 1161
			up to 1.8	
Grimm	10 mT on cathode surface (sample backside)	Al I – 396.2 nm	up to 1.5	Alberts <i>et al.</i> JAAS, 2010, 25 , 1247
Grimm	32 mT on cathode surface (sample backside)	Cu I – 282.4 nm	up to 2	Heintz <i>et al.</i> Appl. Spectrosc., 1995, 49 , 241

Configurations

Magnetic field parallel to the sample surface

Magnetic field perpendicular to the sample surface

Type of magnet	Magnetic field	Properties	T. Curie (°C)
Ferrite	low	Brittle, cheap	300
AlNiCo	medium	Brittle, expensive	540
Nd-Fe-B	high	Tough, medium price	140
Sm-Co	high	Tough, expensive	300

Configurations

Magnetic field parallel to the sample surface

Magnetic field perpendicular to the sample surface

Type of magnet	Magnetic field	Properties	T. Curie (°C)
Ferrite	low	Brittle, cheap	300
AlNiCo	medium	Brittle, expensive	540
Nd-Fe-B	high	Tough, medium price	140
Sm-Co	high	Tough, expensive	300

Type of	N° of	Magnetic
magnets	magnets	field (mT)
	2x1	20
Ferrite	2x2	30
	2x3	38
Nd-Fe-B	2x1	40

Magnetic field parallel to the sample surface

The magnetic field depends on the sample thickness

Magnetic field parallel to the sample surface

Similar configuration but the magnetic field is independent of the sample thickness

Similar configuration but the magnetic field is independent of the sample thickness

Magnetic field parallel to the sample surface

$$R = \frac{\sqrt{2 \cdot E \cdot m}}{q \cdot B}$$

E: electron energy m: electron mass q: charge B: magnetic field

$$R = \frac{\sqrt{2 \cdot E \cdot m}}{q \cdot B}$$

E: electron energy m: electron mass q: charge B: magnetic field

An electromagnet could be used

Higher magnetic fields can be achieved
 Magnetic field can be regulated by the electrical current in the coil

An electromagnet could be used

Higher magnetic fields can be achieved
 Magnetic field can be regulated by the electrical current in the coil

An electromagnet could be used

Higher magnetic fields can be achieved
Magnetic field can be regulated by the electrical current in the coil

Effect of the pressure and applied power

Effect of the pressure and applied power

Effect of the pressure and applied power

Calibration and limit of detection

aluminum matrix set of samples with variable copper content

Reference Material	Cu (mass %)	Al (mass%)
VAW E-2/8	0.20	96.21
VAW 3015-4	0.62	83.80
VAW3035-3	1.98	84.90
VAW E-3/8	4.00	84.28

Calibration and limit of detection

aluminum matrix set of samples with variable copper content

Reference Material	Cu (mass %)	Al (mass%)
VAW E-2/8	0.20	96.21
VAW 3015-4	0.62	83.80
VAW3035-3	1.98	84.90
VAW E-3/8	4.00	84.28

Depth resolution

Sample BSH8: Ni (41.8%), Fe(14.6%), Cr (29.4%)

GD Parameters: 300 Pa - 50 W	B= 0 mT	B= 7.5 mT
Sputtering time (s)	224	226
Crater volumen (x10 ⁷ µm ³)	8.1±0.3	10.1±0.4
Sputtering rate (µg/s)	3.3±0.5	3.9±9.6

Depth resolution

Sample BSH8: Ni (41.8%), Fe(14.6%), Cr (29.4%)

GD Parameters: 300 Pa - 50 W	B= 0 mT	B= 7.5 mT
Sputtering time (s)	224	226
Crater volumen (x10 ⁷ µm ³)	8.1±0.3	10.1±0.4
Sputtering rate (µg/s)	3.3±0.5	3.9±9.6

Depth resolution

Sample: Ni (12.9 μm)/brass

Bibliographic data: WO2009130424 (A1) - 2009-10-29

★ In my patents list > EP Register II Report data error

MAGNETRON SOURCE FOR A GLOW DISCHARGE SPECTROMETER

Page bookmark	WO2009130424 (A1) - MAGNETRON SOURCE FOR A GLOW DISCHARGE SPECTROMETER
Inventor(s):	GANCIU-PETCU MIHAI [RO]; DIPLASU CONSTANTIN [RO]; SURMEIAN AGAVNI [RO]; GROZA ANDREEA-LILIANA [RO]; TEMPEZ AGNES [FR]; CHAPON PATRICK [FR]; CASARES MARCO [FR]; ROGERIEUX OLIVIER [FR] \pm
Applicant(s):	Horiba Jobin Yvon Sas [FR]; nat inst of lasers plasma and [Ro]; ganciu-petcu mihai [Ro]; Diplasu constantin [Ro]; surmeian agavni [Ro]; groza andreea-liliana [Ro]; tempez agnes [FR]; chapon patrick [FR]; casares marco [FR]; rogerieux olivier [FR] <u>+</u>

(12) United States Patent Ganciu-Petcu et al.

(54) DISCHARGE LAMP FOR GDS WITH AN AXIAL MAGNETIC FIELD

- (75) Inventors: Mihai Ganciu-Petcu, Bucarest (RO);
 Virgil Mircea Udrea, Bucarest (RO);
 Agnes Tempez, Massy (FR); Patrick Chapon, Villebon sur Yvette (FR)
- (73) Assignce: Horiba Jobin Yvon SAS, Longjumeau (FR)

(12) United States Patent Ganciu-Petcu et al.

- (54) DISCHARGE LAMP FOR GDS WITH AN AXIAL MAGNETIC FIELD
- (75) Inventors: Mihai Ganciu-Petcu, Bucarest (RO);
 Virgil Mircea Udrea, Bucarest (RO);
 Agnes Tempez, Massy (FR); Patrick Chapon, Villebon sur Yvette (FR)
- (73) Assignce: Horiba Jobin Yvon SAS, Longjumeau (FR)

Conclusions

□ The application of a magnetic field can increase the plasma emission. The magnetic field should be higher than a threshold to obtain noticeable enhancements

□ Depending on the magnet configuration, the resulting magnetic field can be parallel or perpendicular to the sample surface.

□ Depending on the magnets placement the value of the magnetic field on the plasma site can depend on the sample thickness

□ Limits of detection an order of magnitude lower than those obtained without magnetic field can be achieved. Elements not detected in absence of magnetic field can be observed by applying an appropriate magnetic field

□ It is possible to use lower pressures and powers which results extremely convenient for the analysis of polymers and organic samples.

Acknowledgments

 Financial support from the Ministry of Economy and Competitiveness and the Principality of Asturias through the research projects CTQ2013-49032-C2-2-R and GRUPIN14-040

> Horiba

Thank you for your attention!

University of Oviedo

Laser and Plasma Spectroscopy Research Group www.unioviedo.es/gelp

Magnetically Boosted Glow Discharge Optical Emission Spectroscopy for Analytical Applications: Pros and Cons

J. Pisonero, N. Bordel

Results: pulsed rf-GD-OES

Flow rate: 300 sccm Applied power: 80 W

The magnetic field affects the emission when electrons are present in the plasma

Results: non pulsed rf-GD-OES

Background level is not affected by the magnetic field

 ${\bf x}$ 2.17: señal iónica del aluminio (m/z = 27) adquirido en el equipo rf-GD-TOFMS a unas ndiciones de 400 Pa de presión y 40 W de potencia, en presencia de diferentes campos ticos. Para facilitar la interpretación del gráfico se incluye una vista ampliada de la región l
rada. Se indica la zona en la que se han calculado los factores de incremento respecto a la intensidad registrada en ausencia de campo así como dichos factores.

Figure 9.90 espectros de masos con y sin campo en la región del plomo: espectro adquirido en

Alumina layer on Aluminum

The sputtering rate seems to be higher at the higher magnetic field employed The depth resolution seems worse when the magnetic field is applied but the experimental parameters selected are the optimum for the analysis without magnetic field