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� Electrons are more effectively confined than ions by the magnetic field – Re is aprox. 300 lower than Ri

� Ions are not affected by the presence of the magnetic field - Ri is higher that the size of the plasma

� The higher the magnetic field the lower the radius
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GD TYPE MAGNETIC FIELD
EMISSION 

LINES
ENHANCEMENT 

FACTOR
REFERENCE

Hollow cathode
50 mT on magnet surface

(plasma site)
Mg I – 285.2 nm up to 3 Raghaniet al. 

Appl. Spectrosc., 1996, 50, 417

Hollow cathode
100 mT on cathode axis

(plasma site)
Cu I – 324.7 nm up to 4 Simonneauet al. 

Appl. Spectrosc., 1989, 43, 141

Planar cathode
60 mT on cathode surface 

(sample backside)

Cu I – 406.2 nm up to 7 Mc.Caiget al. 
Appl. Spectrosc., 1990, 44, 1176Al I – 396.2 nm up to 7

Planar cathode
30 mT on cathode surface 

(plasma site)

Cu I – 324.7 nm up to 1.3

Chenet al. 
SAB 1997, 52, 1161

Al I – 396.2 nm up to 1.5

Ni I – 341.5 nm up to 1.8

Grimm
10 mT on cathode surface

(sample backside)
Al I – 396.2 nm up to 1.5 Albertset al.

JAAS, 2010, 25, 1247

Grimm
32 mT on cathode surface

(sample backside)
Cu I – 282.4 nm up to 2 Heintzet al. 

Appl. Spectrosc., 1995, 49, 241
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Configurations
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Configurations

Type of magnet Magnetic field Properties T. Curie (ºC)

Ferrite low Brittle, cheap 300

AlNiCo medium Brittle, expensive 540

Nd-Fe-B high Tough, medium price 140

Sm-Co high Tough, expensive 300
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Magnetic field parallel to the sample surface
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Type of 
magnets

Nº of 
magnets

Magnetic 
field (mT)

Ferrite
2x1 20
2x2 30
2x3 38

Nd-Fe-B 2x1 40



B ≠ 0B=0
Sample BSH8: Ni (41.8%), Fe(14.6%), Cr (29.4%)
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Nº of 
magnets
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Ferrite
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20 mT on sample surface



The magnetic field depends on the

sample thickness
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Similar configuration but the magnetic field is

independent of the sample thickness
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Similar configuration but the magnetic field is

independent of the sample thickness

Permanent magnets produce low magnetic

fields in the plasma regions
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Radius of the electron trajectories

E: electron energy

m: electron mass

q: charge

B: magnetic field
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Radius of the electron trajectories

E: electron energy

m: electron mass

q: charge

B: magnetic field

Cross sections
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Permanent magnets produce low magnetic

fields in the plasma regions

An electromagnet could be used
- Higher magnetic fields can be achieved

- Magnetic field can be regulated by the

electrical current in the coil
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Relative Intensity

Ir = IB≠0/IB=0

Discharge Conditions: 450 Pa & 50W
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Effect of the pressure and applied power

Applied power = 60 W
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Higher pressures Increase number of collisions

Magnetic field produces lower effect
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Reference Material Cu (mass %) Al (mass%)
VAW E-2/8 0.20 96.21

VAW 3015-4 0.62 83.80
VAW3035-3 1.98 84.90
VAW E-3/8 4.00 84.28

aluminum matrix set of samples with variable copper content
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Effect of the magnetic field on

Emission intensities

Depth resolution

Sputtering rates

• Higher LODs – 1 order of mag.

• Low pressure and power with

high intensity

• Background and noise is not

affected
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Sample BSH8: Ni (41.8%), Fe(14.6%), Cr (29.4%)

Depth resolution
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Sample: Ni (12.9 µµµµm)/brass

Depth resolution
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metal

metal

C

B≠0B=0
Sample: metal/polymer film
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Sample: thick glass



Conclusions

� The application of a magnetic field can increase the plasma emission. The magnetic field

should be higher than a threshold to obtain noticeable enhancements

� Depending on the magnet configuration, the resulting magnetic field can be parallel or

perpendicular to the sample surface.

� Depending on the magnets placement the value of the magnetic field on the plasma site

can depend on the sample thickness

� Limits of detection an order of magnitude lower than those obtained without magnetic

field can be achieved. Elements not detected in absence of magnetic field can be observed

by applying an appropriate magnetic field

� It is posible to use lower pressures and powers which results extremely convenient for

the analysis of polymers and organic samples.
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Results: pulsed rf-GD-OES

Pulse width: 250 µs

Frequency: 1 kHz

Duty cycle: 25%
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The magnetic field affects the emission when electrons are present in the plasma



Results: non pulsed rf-GD-OES
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Alumina layer on Aluminum

RF-GD-TOFMS RF-GD-OES

The sputtering rate seems to be higher at the higher magnetic field employed

The depth resolution seems worse when the magnetic field is applied but the

experimental parameters selected are the optimum for the analysis without magnetic

field


